
3,6-BIS(Y,Y-DIMETHYLALLYL)-INDOLE FROM <u>UVARIA</u> <u>ELLIOTIANA</u> Hans Achenbach^{*} and Bernd Raffelsberger Chemisches Laboratorium, Universität Freiburg, D-7800 Freiburg, Federal Republic of Germany

Summary - The new title compound <u>1</u> has been isolated from the stem bark of <u>Uvaria elliotiana</u> Engl. & Diels (Annonaceae).

Chromatography (on SiO₂ with CHCl₃) of the crude methanol extract from the stem bark of <u>Uvaria elliotiana</u>, collected in West Africa, yielded as the main product a new alkaloid (0.15% of dry bark), for which structure <u>1</u> was deduced.

 $\frac{1}{2} - C_{18}H_{23}N, [\alpha]_{D}^{20} = \pm 0^{\circ}, \text{ m.p.} < 20^{\circ}C - \text{has an electronic spectrum } [\lambda_{max}(\text{MeOH}) \\ 293(lg \ \varepsilon \ 3.72), 283(3.89), 229(4.65) \text{ nm}] \text{ typical for an indole chromophore and} \\ \text{an absorption band at 3480 cm}^{-1} \text{ in the infrared spectrum (CHCl}_{3}), \text{ which is} \\ \text{characteristic for an } >NH-group.$

Hydrogenation of $\underline{1}$ using Adams catalyst produces a liquid tetrahydro-derivative with an unchanged electronic spectrum.

The ¹H-nmr spectra of $\underline{1}$ and tetrahydro- $\underline{1}$ show that the indole nucleus is disubstituted; the ¹H-nmr data consist of 5 groups of signals, which can be attributed to the structural features indicated in Table 1:

2571

<u><u>1</u></u>		tetrahydro- <u>1</u>	
signal[ppm] s	tructural feature	signal[ppm] structural feature	
7.70 (1H,s broad,excha	ngeable) >NH	7.68 (1H,s broad,exchangeable) >N	н
7.48 (1H,d,J=8Hz)	ų	7.50 (1H,d,J=8Hz) H	
7.10 (1H,s)	H	7.10 (1H,s)	-н
6.93 (1H,dd,J _o =8Hz,J _m =	1Hz)	6.93 (1H,dd,J _o =8Hz,J _m =1Hz)	
6.83 (1H,d,J=1Hz)	Ĥ '	6.83 (1H,d,J=1Hz) H	
5.40 (2H,m)	2x -CH ₂ -C <u>H</u> =C<		
3.41 (4H,2xd,J=7Hz)	2x	$(4H, 2xt, J=7Hz)$ $2x \ge C-CH_2-CH_2$	-
3.41 (4H,2xd,J=7Hz) 1.72 (12H,weakly broad	ened) $4 \times = C - C \underline{H}_3$	1.57 (6H,m) 0.93 (12H,d,J=5Hz) $2x -CH_2 - CH_2 - CH_1$ $2x -CH_2 - CH_2 - CH_1$ $2x -CH_2 - CH_2$	<

Tab.1: ¹H-nmr data from <u>1</u> and tetrahydro-<u>1</u> (CDCl₃-solution; 90 MHz, standard: TMS)

The chemical shifts of the non-indolic protons of $\underline{1}$ are in agreement with the presence of two γ, γ -dimethylallylic groups.

Irradiation experiments upon $\underline{1}$ and the observed alteration of the ¹H-nmr spectrum after hydrogenation prove fully a bis(γ, γ -dimethylallyl)-substituted indole structure.

The position of one of the substituents of the indole system at C-6 could readily be deduced from the ¹H-nmr data^{1,2}: In the case of a substituent at C-5 the characteristic signal of H-(4) at δ 7.48 ppm should appear as a doublet with J_{A 6}=1.6 Hz³.

From the singlet at 6 7.10 ppm the other substituent was supposed to be at $C-3^{4)}$. This was confirmed by the ¹³C-nmr data: According to Parker and Roberts alkylation of indoles at position-2 or -3 causes a characteristic downfield shift (10-13 ppm) in the ¹³C-resonance of the substituted carbon atom⁵⁾. The values of interest from indole and the methyl indoles are listed in Table 2,

atom	indole	2-methylindole	3-methylindole	<u>1</u>	
C-2	125.2 ⁵⁾ 123.7 ⁶⁾	135.7 ⁵⁾	122.7 ⁵⁾	123.3	
C-3	102.6 ⁵⁾ 101.8 ⁶⁾	100.4 ⁵⁾	111.4 ⁵⁾	110.3	

which gives, in addition, the corresponding signals found in the spectrum of $\underline{1}$

Tab.2: ¹³C-resonance of C-2 and C-3 in $\underline{1}$ and some indoles (ppm in CDCl₃-solution, standard: TMS).

Since there are no other signals between 6 77 ppm (= 13 CDCl₃) and 6 110.3 ppm in the 13 C-nmr spectrum of <u>1</u> carbon C-3 must be substituted.

Whereas a very few mono-substituted isoprenyl- or γ, γ -dimethylallylindoles are known to occur in plants^{1,7)} 3,6-bis(γ, γ -dimethylallyl)indole (<u>1</u>), isolated from <u>Uvaria elliotiana</u>, is the first naturally occurring indole substituted only by two unlinked isoprenoid units. Furthermore it has to be pointed out, that <u>1</u> has been isolated as the main alkaloid from a species of the family Annonaceae, whose plants preferably produce alkaloids of the benzyl-isoquinoline-aporphine group^{8,9)}.

This work was supported by the Deutsche Forschungsgemeinschaft and by the Fonds der Chemischen Industrie.

References:

- V.Benešová, Z.Samek, V.Herout and F.Šorm, Collect.Czech.Chem.Commun. <u>34</u>, 1807 (1969).
- H.Plieninger and H.Sirowei, Chem.Ber. <u>104</u>, 2027 (1971); H.Ishi and Y.Murakami, Tetrahedron <u>31</u>, 933 (1975).

- W.A.Jerram, A.G.McInnes, W.S.G.Maas, D.G.Smith, A.Taylor and J.A.Walter, Can.J.Chem. <u>53</u>, 727 (1975).
- 4) L.A.Cohen, J.W.Daly, H.Kny and B.Witkop, J.Amer.Chem.Soc. 82, 2184 (1960).
- 5) R.G.Parker and J.D.Roberts, J.Org.Chem. 35, 996 (1970).
- 6) E.Rosenberg, K.E.Williamson and J.D.Roberts, Org.Magn.Reson. 8, 117 (1976).
- 7) M.N.Nwaji, S.O.Onyiriuka and D.A.H.Taylor, J.C.S.Chem.Commun. 1972, 327.
- T.Kametani: The Chemistry of the Isoquinoline Alkaloids, Elsevier Publ.Co.; Amsterdam, London, New York 1969.
- 9) R.F.Raffauf: A Handbook of Alkaloids and Alkaloid-Containing Plants, Wiley-Interscience; New York, London, Sydney, Toronto 1970.

(Received in Germany 5 April 1979)